
Performance-aware Application Distribution in the Cloud

Santiago Gómez Sáez, Vasilios Andrikopoulos, Frank Leymann
Institute of Architecture of Application Systems

Universtät Stuttgart,
Universitätsstraße 38, 70569 Stuttgart, Germany

{gomez-saez, andrikopoulos, leymann}@iaas.uni-stuttgart.de

Abstract: The emergence of Cloud computing and the improvement of resource
management techniques have contributed to an increase in the number of application
developers that are strong supporters of partially or completely migrating their appli-
cation to a highly scalable and pay-per-use infrastructure. In this work in progress
paper we begin the analysis on how to optimally distribute the application layers in the
Cloud in order to adapt its topology to handle oscillating over time workloads. More
specifically, through an empirical workload analysis and characterization we present
our initial evaluation of an application persistence layer’s performance under different
deployment scenarios.

1 Introduction

With the increasing number of available Cloud services which allow to partially or com-
pletely deploy the application in the Cloud, it becomes possible to host only some of the
application components off-premise (in the Cloud), e.g. its database, while the remaining of
the application remains on-premise [ABLS13]. Our investigations concentrate on optimally
distributing the application in the Cloud considering the workload that the underlying infras-
tructure must bear. Given that the application workload oscillates over time, we therefore
aim to analyze how to optimally adapt the application deployment topology accordingly.
In this work in progress paper we focus on the application persistence layer and discuss
our initial performance analysis for application topology options using the TPC-H database
benchmark workload and data as the basis. The contributions of this work can therefore be
summarized as:

1. the analysis of the relationship between the application deployment topology, its
workload oscillation over time, and the expected performance,

2. a workload characterization focusing on the application persistence layer by using
the TPC-H benchmark, and

3. the generation and performance evaluation of artificial workloads for different de-
ployment topologies of the application persistence layer.

The remainder of this paper is structured as follows: Section 2 summarizes relevant concepts
and related works. Sections 3 and 4 present our experiments and discuss the most important



findings, respectively. Finally, Section 5 concludes with the future work.

2 Background

Application deployment and distribution tasks in a Cloud infrastructure require the ful-
fillment of preliminary tasks related to compliance, underlying resources description,
application distribution arrangement, cost calculations, etc. In order to guarantee the ex-
pected application performance, such tasks should incorporate performance awareness. The
migration of the different layers of an application to the Cloud is analyzed in [ABLS13],
where multiple migration types are categorized and their corresponding adaptation needs
are identified. In [LFM+11] a migration method and tool chain based on application model
enrichment for optimally distributing the application across one or multiple Cloud providers
is presented. In this work we target the challenge of optimizing the application layers’
distribution in the Cloud based on its workload and expected performance. Moreover, this
workload may oscillate over time due to external or internal parameters. For example, an
online web store workload is increased at certain time periods, e.g. before the Christmas
season, which may generate unnecessary monetary costs and/or performance degradation.
This problem can be analyzed from two different perspectives: from the Cloud Consumer
and the Cloud Provider objectives. On the one hand, the Cloud consumer aims to maximize
the resource usage while minimizing the incurred monetary costs. On the other hand, the
Cloud provider’s goals are associated with the utilization of virtualization and multi-tenancy
techniques to minimize operational costs while ensuring isolation between the loads gener-
ated by each Cloud consumer. Our goal, therefore, is to provide the necessary methodology
and artifacts to analyze such workload oscillations over time and dynamically (re-)distribute
the application layers towards bridging the gap produced by the existing conflict of interests
between the Cloud consumer and the Cloud provider.

According to several investigations [BM11, GRCK07, JVS98, MMVP13, MMZVP13,
WMG+10], two approaches for analyzing the application workload evolution can be
identified: top-down and bottom-up. In the top-down approach, the application workload
is characterized, and the application behavior model is derived before or during the de-
ployment of the application. The importance of understanding the characteristics of the
application workload to achieve efficiency is discussed in [JVS98], and hence a set of
micro-architectural metrics are presented. In [BM11], an application workload specification
language for creating synthetic workloads to evaluate Cloud applications is created. The
combination of probability distribution fitting techniques and workload parameter analysis
facilitates the building of the workload behavior model. However, a drawback of only
following a top-down analysis approach is the inability of handling the workload evolu-
tion over time. Bottom-up approaches address this deficiency with the help of resource
consumption monitoring techniques and performance metrics. Predicting infrastructure con-
sumption needs based on the periodicity and similarity of occurrences over time workload
demands is investigated in [GRCK07], where the cyclical aspect of multiple workloads in a
large number of data centers allows to characterize, predict, and place workloads. Further
resource prediction analysis can be driven using simulation approaches, such in [FFH12],



by simulating the monetary and performance cost of multiple Cloud deployment options
(CDO). Towards satisfying Service Level Objectives (SLOs), in [WMG+10] the proba-
bilistic relationship between resource consumption and application performance to model
the response time distribution is analyzed. The analysis and generation of performance
models for data-intensive workloads in public Clouds is addressed in [MMZVP13]. Such
models can ease capacity management operations to predict the workload behavior and to
determine the most cost-effective resource configuration [MMVP13].

Top-down and bottom-up application workload analysis approaches can be combined over
time in order to proactively satisfy application demands by dynamically (re-)adapting
its topology. In this work we first focus on analyzing the application workload at the
persistence layer, and therefore we use the existing TPC-H benchmark1 as the basis to
generate application workloads that fit to different probability distributions, and analyze the
consequent performance under different deployment topologies.

3 Experiments

3.1 Experimental Setup

We focus our experiments on emulating the behavior of an application which is built using
the three layers pattern (presentation, business logic, and data, i.e. persistence) proposed
in [F+02]. In a first step, we generate 1GB of representative application data using the
TPC-H Benchmark. In a second step, we use Apache JMeter 2.92 as the application load
driver to emulate the application business logic layer, using the automatically generated
set of 23 TPC-H SQL queries as the load. We use the following infrastructures for the
distribution of the application:

• an on-premise virtualized server on 4 CPUs Intel Xeon 2.53 GHz (2 virtual cores per
CPU) with 8192KB cache, 4GB RAM, and running the Ubuntu 10.04 Linux OS and
MySQL 5.1.72,

• an off-premise virtualized server (IaaS) hosted in the Flexiscale Infrastructure3

consuming 8GB RAM, 4 CPUs AMD Opteron 2GHz with 512KB cache (2 virtual
cores per CPU), and running the Ubuntu 10.04 Linux OS and MySQL 5.1.67,

• and an off-premise MySQL 5.1.69 db.m1.xlarge database instance (DBaaS) hosted
on Amazon RDS4.

We create three distribution scenarios, with the application data 1) in the MySQL on-
premise, 2) the MySQL on the IaaS solution, and 3) on the DBaaS solution, while the
load driver remains in all cases on-premise. The application persistence layer performance

1TPC-H Benchmark: http://www.tpc.org/tpch/
2Apache Jmeter: http://jmeter.apache.org/
3Flexiscale: http://www.flexiscale.com/
4Amazon RDS: http://aws.amazon.com/rds/

http://www.tpc.org/tpch/
http://jmeter.apache.org/
http://www.flexiscale.com/
http://aws.amazon.com/rds/


Table 1: Generated TPC-H Database Schema Analysis.

Table Size (MB) Columns Access Count

customer 23.41 8 8
lineitem 614.06 16 18
nation 0.0023 4 9
orders 140.49 9 12
part 23.43 9 8

partsupp 113.77 5 5
region 0.0004 3 3

supplier 1.37 7 10

in each scenario is measured by normalizing the throughput (Req./s). The measured
throughput is defined as the sum of the number of transaction per second of the application
database engine, including the network latency introduced by the different deployment
topologies of the application persistence layer. Such experiments have been driven across
10 rounds on average per day for a period of three weeks in the last quarter of 2013.

3.2 TPC-H Characterization

As previously discussed, top-down and bottom-up approaches can be combined to evaluate
and analyze the application workload and behavior over time. For this purpose, using
the first deployment scenario (on-premise) we analyze the database schema and initial
workload of the application as summarized by Table 1 and Table 2. Table 1 shows the
relationship between the database schema characteristics and the total number of accesses
that the workload performs on each table.



Table 2: TPC-H Workload Analysis.

Query Accessed
Tables

Subqueries Total Logical
Evaluations

Throughput (Req./s) Retrieved
Data (B)

On-
Premise

IaaS DBaaS

Q(1) 1 0 1 0.03425 0.03396 0.03817 538
Q(2) 5 1 13 0.07927 0.14884 3.03260 15857
Q(3) 3 0 5 0.08687 0.11733 0.31185 376
Q(4) 2 1 5 0.53950 0.73922 0.94903 105
Q(5) 6 0 9 0.01148 0.02014 0.33484 130
Q(6) 1 0 4 0.20583 0.21355 0.28261 23
Q(7) 5 1 11 0.03123 0.04782 0.20792 163
Q(8) 7 1 11 0.97156 1.45380 0.18196 49
Q(9) 6 1 8 0.05947 0.09123 0.05548 4764
Q(10) 4 0 6 0.09168 0.11970 0.49834 3454
Q(11) 3 1 6 2.59998 4.07134 0.26802 16069
Q(12) 2 0 7 0.21147 0.22465 0.13981 71
Q(13) 2 1 2 0.12771 5.32350 - 16
Q(14) 2 0 3 0.03373 0.06017 0.29052 28
Q(15) 1 0 2 201.533 22.2591 23.1152 9
Q(16) 2 1 2 0.11346 0.11219 0.13471 120
Q(17) 3 1 6 0.10931 0.19021 0.97148 648259
Q(18) 2 1 5 0.98213 1.81212 - 25
Q(19) 3 1 3 - - - -
Q(20) 2 0 25 4.05648 4.90228 0.17083 21
Q(21) 5 2 8 3.02705 5.32847 - 8989
Q(22) 4 2 13 0.01070 0.01734 0.06065 8944
Q(23) 2 2 6 2.72083 3.30785 - 137

Avg. 3.17 0.73 7 9.89262 2.29976 1.72467 32188.5
Median 3 1 6 0.12058 0.20188 0.27531 133.5
σ 1.74 0.68 5.23 41.8356 2.67162 5.23164 137693.78



A secondary analysis consists of dissecting the set of queries which constitute the workload,
and quantitatively analyzing their logical complexity, table joints, subqueries, etc. (Table 2).
Throughput and retrieved data size measurements are considered as performance metrics,
and therefore are a part of the bottom-up analysis approach. We combined both analysis
approaches towards analyzing the relationship between the complexity of the workload
queries and the performance of different application persistence deployment topologies.
Towards this goal, queries are categorized by trimming the mid-range of the initial workload
measured throughput and by comparing the total number of logical evaluations with respect
to the remaining set of queries in the workload. Given the strong connection between the
measured throughput and the resource consumption of the database engine in the TPC-H
benchmark, the following categories are defined: compute high (CH), compute medium
(CM), and compute low (CL).

3.3 Workload Generation and Evaluation

Subsequent to characterizing and grouping the application workload into the previously
presented categories, workload generation and evaluation can take place. For this purpose,
probabilistic workload generations techniques are supported, for example, by Malgen5

and Rain [BLY+10]. The former supports the creation of large distributed data sets for
parallel processing benchmarking, e.g. Hadoop, while the latter provides a flexible and
adaptable workload generator framework for Cloud computing applications. However, such
approaches do not consider the distribution of the application layers.

By using scripting techniques and the set of successfully executed TPC-H queries, we
created multiple workloads for each of the categories we identified in the previous with
size 1000 SQL queries each, using a different probability distribution for each workload.
The workload probability distribution was derived by calculating its cumulative function
and using the probability distribution fitting functionalities provided by EasyFit6. Table 3
summarizes the measured average throughput for each distribution. In the future, we plan to
evaluate existing workload generation tools to incorporate support for generating multiple
artificial workloads according to specified probability distributions considering the different
deployment topologies of the application layers.

4 Analysis & Discussion

The empirical analysis depicted in Tables 1 and 2 drives the following conclusions with
respect to the initial workload:

• the number of accesses on the different tables is not proportionally distributed across
the queries constituting the workload,

5Malgen: http://code.google.com/p/malgen/
6EasyFit: http://www.mathwave.com/

http://code.google.com/p/malgen/
http://www.mathwave.com/


Table 3: Workload and Application Data Distribution Evaluation Results.

Scenario Category Probability
Distribution

Throughput
(Req./s)

On-
Premise

CL Inv. Gaussian 0.27749

On-
Premise

CM Pareto 0.05888

On-
Premise

CH Lognormal 0.02696

DBaaS CL Log-Logaristic 0.45238
DBaaS CM Inv. Gaussian 0.19972
DBaaS CH Lognormal 0.10273

• the queries which constitute the initial workload are highly heterogeneous with
respect to the logical complexity and to the retrieved data, and

• such heterogeneity is also observed when comparing the throughput fluctuation of
the different queries among the analyzed scenarios.

• When deploying the database in the IaaS solution, the average performance of 85%
of the successfully executed queries improves between 3% and 4078%. However,
such maximum peak is due to the nature of query Q(15), an SQL CREATE VIEW
statement. In average, the initial workload performance without considering the
maximum and minimum peaks is improved in approximately 166%.

• When deploying the database in the DBaaS solution, the average performance of 70%
of the successfully executed queries improves between 11% and 3725%. However,
such maximum peak is related again to the nature of query Q(15), and the average
performance without considering the maximum and minimum peaks improvement of
the initial workload is 225%.

• There are queries whose performance is degraded when being executed off-premise,
such as Q(1), Q(15), and Q(16) for the IaaS solution scenario, and such as Q(8), Q(9),
Q(11), Q(12), Q(15), and Q(20) for the DBaaS solution scenario.

After analyzing the individual behavior of the queries that constitute the initial workload, we
analyze the performance of the generated workloads under different deployment topologies
of the application persistence layer. We can observe from the obtained results depicted in
Table 3 that:

• the compute demand is indeed increased among the three different workload cate-
gories, and the throughput is reduced by 78% to 90% when executing the workload
on-premise, and by 55% to 57% when executing the workload in a DBaaS solution,
using the CL category as the baseline, and



• the overall performance is highly improved when executing the generated workloads
in a DBaaS solution, observing an increase of 163%, 339%, and 381% for the CL,
CM, and CH workloads, respectively.

From the previous results it can be therefore concluded that not only different workload
distributions perform in a different manner, but also that adapting the application deployment
topology with respect to the workload demands significantly and proactively improves
the application performance. We therefore observe a necessity of providing support for
(re-)adapting the application topology, i.e. (re-)distributing its layers to optimally consume
the required resources to satisfy the workload demands oscillations. With the help of
workload characterization and generation techniques, probabilistic models, and prediction
capabilities, the application can be proactively and optimally adapted to satisfy different
workload demands. Focusing on the application persistence layer, the combination of data
replication techniques with dynamic routing of requests may help to achieve an optimal
performance. Dynamic routing of database requests has been previously studied and
enabled by the CDASMix [GALS10] approach which allows transparent access to multiple
databases without requiring adaptations to the other application layers. CDASMix can
therefore facilitate the (re-)distribution of the persistence layer across on- and off-premise
solutions.

5 Conclusions and Future Work

Through the experimental analysis discussed in this work in progress paper, we demonstrate
that the different application layers can produce oscillating over time workloads which
impact on the overall application performance. The application layers (re-)distribution is
proposed as an approach to proactively ameliorate performance degradations. Focusing
on (re-)distributing the application persistence layer by means of evaluating on- vs. off-
premise deployment models, and analyzing, characterizing, and generating workloads with
different characteristics, our experiments already show an enhanced performance when
the persistence layer is deployed off-premise. This improvement however varies in each
distribution scenario depending on the type of queries used and the workload distribution.

Future work focuses on analyzing the performance for further deployment topologies. In
order to help application developers to derive its topology and to (re-)adapt and tune it over
time, we also plan to extend existing application topology description approaches to include
support to proactively meet fluctuating application performance demands.

6 Acknowledgments

This work is funded by the FP7 EU-FET project 600792 ALLOW Ensembles.



References

[ABLS13] Vasilios Andrikopoulos, Tobias Binz, Frank Leymann, and Steve Strauch. How to
Adapt Applications for the Cloud Environment. Computing, 95(6):493–535, 2013.

[BLY+10] Aaron Beitch, Brandon Liu, Timothy Yung, Rean Griffith, Armando Fox, and David A.
Patterson. Rain: A Workload Generation Toolkit for Cloud Computing Applications.
Technical Report UCB/EECS-2010-14, University of California, Feb 2010.

[BM11] Arshdeep Bahga and Vijay Krishna Madisetti. Synthetic Workload Generation for
Cloud Computing Applications. JSEA, 4:396–410, 2011.

[F+02] M. Fowler et al. Patterns of Enterprise Application Architecture. Addison-Wesley
Professional, 2002.

[FFH12] Florian Fittkau, Sören Frey, and Wilhelm Hasselbring. CDOSim: Simulating cloud
deployment options for software migration support. In Proceedings of MESOCA’12,
pages 37–46. IEEE, 2012.

[GALS10] Santiago Gómez Sáez, Vasilios Andrikopoulos, Frank Leymann, and Steve Strauch.
Evaluating Caching Strategies for Cloud Data Access using an Enterprise Service Bus.
In Proceedings of IC2E’14, 2010. (to appear).

[GRCK07] Daniel Gmach, Jerry Rolia, Ludmila Cherkasova, and Alfons Kemper. Workload Anal-
ysis and Demand Prediction of Enterprise Data Center Applications. In Proceedings
of IISWC’07, pages 171–180, 2007.

[JVS98] Lizy Kurian John, Purnima Vasudevan, and Jyotsna Sabarinathan. Workload Charac-
terization: Motivation, Goals and Methodology. In Proceedings of WWC’98, 1998.

[LFM+11] Frank Leymann, Christoph Fehling, Ralph Mietzner, Alexander Nowak, and Schahram
Dustdar. Moving Applications to the Cloud: An Approach based on Application
Model Enrichment. IJCIS, 20(3):307–356, October 2011.

[MMVP13] Rizwan Mian, Patrick Martin, and Jose Luis Vazquez-Poletti. Provisioning Data
Analytic Workloads in a Cloud. FGCS, 29:1452–1458, 2013.

[MMZVP13] Rizwan Mian, Patrick Martin, Farhana Zulkernine, and Jose Luis Vazquez-Poletti.
Towards Building Performance Models for Data-intensive Workloads in Public Clouds.
In Proceedings of ICPE’13, 2013.

[WMG+10] Brian J. Watson, Manish Marwah, Daniel Gmach, Yuan Chen, Martin Arlitt, and
Zhikui Wang. Probabilistic Performance Modeling of Virtualized Resource Allocation.
In Proceedings of ICAC’10, 2010.

All links were last followed on October 20, 2008.


	Introduction
	Background
	Experiments
	Experimental Setup
	TPC-H Characterization
	Workload Generation and Evaluation

	Analysis & Discussion
	Conclusions and Future Work
	Acknowledgments

